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Abstract. We study the organization and dynamics of growing directed
networks. These networks are built by adding nodes successively in such a way
that each new node hasK directed links to the existing ones. The organization of
a growing directed network is analyzed in terms of the number of ‘descendants’
of each node in the network. We show that the distributionP(S) of the size,S,
of the descendant cluster is described generically by a power-law,P(S) ∼ S−η,
where the exponentη depends on the value ofK as well as the strength of
preferential attachment. We determine that, in the case of growing random
directed networks without any preferential attachment,η is given by 1 + 1/K . We
also show that the Boolean dynamics of these networks is stable for any value
of K . However, with a small fraction of reversal in the direction of the links,
the dynamics of growing directed networks appears to operate on ‘the edge of
chaos’ with a power-law distribution of the cycle lengths. We suggest that the
growing directed network may serve as another paradigm for the emergence of
the scale-free features in network organization and dynamics.
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The dynamics of complex adaptive systems is strongly influenced by the way the elements of
the network are connected and the way these elements interact. The organization of real-world
networks [1]–[3] has attracted intensive interest following the seminal work of Barabási and
Albert [4] on scale-free networks. The degree distributionP(k), which gives the probability
that a randomly selected node has exactlyk edges, has been used as the most important
characterization of complex networks. Power-law or scale-free degree distributions have been
found in many real-world complex networks, such as the Internet, cellular metabolic networks,
research collaboration network, and the World Wide Web [4, 5]. Most studies of the network
have been focused on network topology, but there are also a few studies of dynamical processes
on these networks [6]–[8]. In particular, Aldana and Cluzel demonstrated that the scale-free
topology of the network favors robust dynamics [9]. Nevertheless, much work is still needed to
characterize and classify network dynamics and organization.

In this paper, we study a generic class of growing directed networks, which are grown by
adding nodes successively, just as in the well-known Barabási–Albert model. But we consider
the resulting network only as a directed network, and we focus on the limiting case of a citation-
like network in which the new node is directed to the existing nodes and not the other way
around. Except for the initial cluster ofK + 1 nodes, which are linked in both directions, all
other nodes added haveK directed links to the existing ones. In terms of dynamics the existing
nodes are not controlled by the new node added, thus the network can be viewed essentially
as a hierarchical feed-forward network. To make our discussion relevant to many real world
networks which typically have a fraction of feedback links, we also consider the modified
network that contains a small fraction of link reversals.

We investigate the global organization of these growing directed networks. Unlike the
undirected version of the network, the influence of a node on the others in the directed network
may be limited. For each node we can define a descendant cluster consisting of all the nodes that
are linked to it directly or indirectly through intermediate nodes. More precisely, the descendant
cluster of nodev is the set of all nodes from which nodev can be reached by following a path
of directed links. This is the same as the in-component defined in [10]. The possible impact
of a given node on the others can be characterized by the size of its descendant cluster. The
cluster size distribution gives an overall description of the network organization in terms of the
potential influence of one node on the others. It is a better measure of the global organization
of the directed network than the degree distribution, which is essentially a measure of local
connectivity in the network. We show that, as far as the cluster size distribution is concerned,
growing directed networks are generically scale-free, irrespective of the strength of preferential
attachment and the value ofK .

We also investigate the Boolean dynamics of these growing networks. The study of the
dynamics of Boolean networks was pioneered by Kauffman [11, 12], who focused primarily
on random directed networks. Kauffman’s NK model (Kauffman net) consists ofN nodes and
K directed links per node such that each node is controlled byK other nodes. The model has
been used as a prototypical model of gene regulation and control. Kauffman suggests that gene
networks operate on the ‘edge of chaos’ (in a critical phase), as evolution demands that there be
sensitivity to perturbations and mutations. In Kauffman’s NK model, the critical phase (defined
as the edge of chaos) occurs only at the specific parameter valueK = 2 [11, 13]. For K > 2
the dynamics is chaotic. We show that, in contrast, the dynamics of growing directed networks
(with a small fraction of link reversals) appears to operate on the ‘edge of chaos’ for a wide
range of values ofK .
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Figure 1. Model A: the descendant cluster size distribution forα = 0, 0.5 and 1.
N = 200 000 andK = 5 are used.

Two models of growing directed networks are considered in our study. In model A, the
network is grown in the same way as in the undirected version [14]. Krapivsky–Redner–
Leyvraz (KRL) network model is built by adding sites that link to earlier sites with a probability
depending on the number of pre-existing linksk to that site. They found that for homogeneous
connection kernels,Pk ∼ k−α, different behaviors arise forα < 1, α > 1 andα = 1. We start
with an initial cluster ofK + 1 nodes, which are fully connected (two directed links between
each pairs of nodes). At each stage, we add a new node withK links to K of the nodes already
present in the network. The link is directed from the new node to an existing node, meaning that
the new node is a descendant of the existing one. We assume that the probability of connecting
a new node to an existing one with degreek is proportional tokα, wherek is the total degree of
the node:k = kin + kout (kin is the number of incoming links andkout is the number of outgoing
links; for this modelkout ≡ K ). For α > 0, we have preferential attachment. The undirected
version of the network withα = 1 corresponds to the Barabási–Albert model. The power-law
degree distribution can only be observed forα = 1 [14, 15]. As far as the degree distribution is
concerned, the network is only scale-free whenα = 1. In contrast, we found that the power-law
distribution is in fact quite generic in the size distribution of descendant clusters. Figure1 shows
such size distribution forα = 0, 0.5, 1.0 andK = 5. The degree distributions are also shown in
the figure for comparison. Forα 6 1.0 the cluster size distribution can be described very well
by a power lawP(S) ∼ S−η. (The deviation is noticeable only whenS∼ O(N).) Forα = 0 and
0.5, we found the exponentη ≈ 1.2, and forα = 1, η ≈ 1.3. We have checked that the power
laws exist for a wide range of values ofK ; the exponent depends on bothK andα. Even though
α = 1 is a special case for the degree distribution (as can also be seen from figure1), it is not
for the descendant cluster distribution. The power-law distribution of descendant cluster sizes is
rather generic in growing directed networks.

In the mean time, we can see all these power laws follow the finite size scaling. In figure2,
it is shown that all the data forα = 0. N = 50 000, 100 000, 200 000 andK = 5 fall on one line
with η ≈ 1.2.

We also consider a variant of model A, which we refer to as model B. In this model, we
choose the growth rule such that the probability of connecting to the node with in-degreekin is
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Figure 2. Model A: the descendant cluster size distribution forα = 0. N =

50 000, 100 000, 200 000 andK = 5 are used.

S
100 101 102 103 104 105 106

P
 (

s)

10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

100

α = 0 (cluster size) 
α = 0.5 (cluster size)
α = 1 (cluster size)
α = 0 (degree)
α = 0.5 (degree)
α = 1 (degree)

Figure 3. Model B: the descendant cluster size distribution forα = 0, 0.5 and 1.
N = 200 000 andK = 5 are used.

proportional tokα
in + 1. The constant 1 is added to give a nonzero starting weight to the nodes

that have not been connected to. Again we obtain power-law cluster size distributions, which are
plotted in figure3. The exponents obtained for the cluster distribution are different from those
of model A. We obtainedη ≈ 1.2 for α = 0, η ≈ 1.3 for α = 0.5, andη ≈ 1.6 for α = 1.

Models A and B are the same model whenα = 0 (no preferential attachment). For this case
we can write down a master equation for the cluster size distribution. Letn(N, S) be the number
of clusters of sizeS when N nodes are present. Now we add a new node to the network. For
N � K , n(N, S) evolves according to the following equation:

n(N + 1, S+ 1) = n(N, S)

[
1−

(
1−

S

N

)K
]

+ n(N, S+ 1)

(
1−

S+ 1

N

)K

, (1)
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Figure 4. The cluster size distribution forα = 0, K = 1, 2, 3, 5, 8 and N =

200 000. The slopes of the lines drawn can be given by the value (−
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K ).

where(1−
S
N )K is the probability that the new node added does not link to any of theSnodes in

a given cluster of sizeS. For 1� S� N, n(N, S) can be approximated asn(N, S) = N ∗ p(s),
wheres = S/N andp(s) is the probability density function for the size distribution. In addition,
1− (1−

S
N )K

≈ K S/N = Ks. In terms ofp(s) the above equation can be rewritten as

p

(
s+

1

N

)
= −N

[
K

(
s+

1

N

)
p

(
s+

1

N

)
− Ksp(s)

]
. (2)

Neglecting the terms of order 1/N and higher, we have

Ks
dp

ds
= −(K + 1)p(s). (3)

This leads top(s) ∝ s−η with η = 1 + 1/K . Figure 4 shows the cluster size distribution for
α = 0 andK = 1, 2, 3, 5 and 8. The inset in figure4 shows clearly that the numerical values of
the exponentη for different K agree very well with the analytical values.

In figures1, 3 and4, we may see that all the curves bend upwards for large sizes. This
can be understood as a finite size effect. When the size approaches that of the whole network,
the big size cluster appears with a probability appreciably larger than the value predicted by the
power law scaling.

The cluster distribution for the special case ofα = 0 and K = 1 was first obtained by
Krapivsky and Redner [10]. They obtainedη = 2 in agreement with our analysis. They also
pointed out that the distribution for the special case ofα = 1 andK = 1 can also be obtained
analytically, andη is again equal to 2. This is not surprising, for both cases, the probability
that a new node is added to a cluster of size S is simplyS/N. This can be seen from the fact
that, forα = 1, this probability is proportional to

∑
kin/N, which is the same asS/N, because∑

kin =
∑

kout = Sfor the cluster. Thus exactly the same master equation applies for both cases.
We have also checked, numerically, thatη is in fact equal to 2 for 06 α 6 1.

We can also generalize the model to the caseK < 1. The meaning ofK for this case is the
probability that the new node gets connected to a randomly chosen existing node (the resulting
network consists of disconnected components). Let us consider again the special case ofα = 0.
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It is easy to check that the same master equation (equation (2)) can be used to determinep(s),
leading again top(s) ∝ s−η with η = 1 + 1/K > 2. It is interesting to note the component size
distribution of growing (undirected) networks in the subcritical regime follows exactly the same
scaling (see equation (31) of [16], which contains a review of universal properties of growing
networks and earlier references on this subject). This is not surprising as the same master
equation applies to both the distribution of the descendant cluster and that of the component
size. However, there is no direct one-to-one mapping which maps a descendant cluster to a
component of the network (each node has a descendant cluster, but the number of connected
components is typically much less than the number of nodes).

We now turn to the Boolean dynamics of growing directed networks. The study of the
dynamics of Boolean networks was pioneered by Kauffman, who used it as a prototypical model
of a genetic regulatory network. In a Boolean network, each node is represented by an on–off
switch which is a function of the binary output from some other nodes. In the Kauffman net,
each node is controlled byK other nodes chosen randomly. The dynamics of the Kauffman net
depends crucially onK . For K = 1 the dynamics converges to a fixed point or a limit cycle (this
is the ordered phase). ForK = 2, the system is at the ‘edge of chaos’ where cycles of many
different lengths can appear. ForK > 2, the system is in the chaotic phase.

The Boolean dynamics of our growing directed network is always in the ordered phase
with the maximum period equal to 2K+1. This is due to the fact that, by construction, the initial
K + 1 nodes are mutually connected; they are not controlled by the nodes added to the network
later. Thus the maximum period for the dynamics of this initial cluster is 2K+1. As the new
nodes are controlled only by the existing nodes in the cluster, it is easy to show, by induction,
that the period of the dynamics of the entire system is the same as the period of the dynamics
of the initial cluster. Thus the dynamics of the growing directed network is in the ordered phase
irrespective of the values ofK andα.

Many real-world networks, with the possible exception of citation-like networks, are not
simple feed-forward directed networks we considered above. There typically exist a certain
fraction of feedback links (the new node controls the existing one). To model these networks,
we start with the original feed-forward network. Then, with a probabilityq = p/K (herep is
the probability that a node has a feedback link), we reverse the direction of the links. Here we
focus on the case ofα = 0 (growing random directed networks). For sufficiently small values
of p, the Boolean dynamics of these modified networks is similar to that of the Kauffman
net whenK = 2 [17]: depending on the initial conditions, cycles of a wide range of lengths
appear. We performed extensive simulation of the Boolean dynamics of these networks for
various values ofα, K and N. The length of the simulation is up to 107 time steps so that
we can detect the period of the dynamics up to the order of 107. The statistical results were
obtained by averaging over 2000–200 000 independent runs. Figure5 shows the distribution
of the cycle length (period), which can be described as a power lawP(T) ∼ T−θ , where the
exponent increases asp increases. We also found that there is a threshold valuepc, which
depends on bothK and N. The power law distribution ofP(T) occurs forp < pc, with the
exponentθ approaching 1 asp → pc. For p > pc, the fraction of chaotic dynamics (numerically
we classify the dynamics as chaotic if the period is greater than 107) increases rapidly. There
is a clear transition from the ‘edge of chaos’ regime to a chaotic regime. Figure6 shows the
fraction of chaotic dynamics as a function ofp, for K = 4 and 6,N = 201, 401 and 801. The
transition is rather sharp for largeN. We have also checked that the same qualitative behaviors
can be observed for smallα (α < 0.5). However, forα close to 1, even though there is still a
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Figure 5. The distribution of cycle lengths in growing random directed networks
(α = 0) for the cases: (a)K = 6, N = 401, (b)K = 6, N = 801, and (c)K = 4,
N = 801. The distribution (for 0< p < pc) can be approximated by a power law
P(T) ∼ T−θ .
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Figure 6. The fraction of chaotic dynamics found in growing random directed
networks as a function ofp for N = 201, 401, 801, and (a)K = 4 and (b)K = 6.

transition to a chaotic regime, there is no ‘edge of chaos’ regime forp < pc (the distribution
P(T) is broad, but it cannot be described using a power law). This shows that the dynamical
properties of the network are not necessarily correlated with the local degree distribution. The
limit of large N can also be seen from figure6 where whenN approaches infinity, all finitep
values will lead to almost the whole case belonging to chaotic dynamics. However, it remains
a challenging task to identify the key features of the global organization of the networks that
directly affect the dynamics [18]–[21].
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In conclusion, we have studied the organization and Boolean dynamics of growing directed
networks. In terms of clusters of descendants, the size distribution exhibits a robust power law
for a wide range ofK and α values. The Boolean dynamics of the networks is very stable
with the maximum period equal to 2K+1. However, with a small fraction of link reversals, the
dynamics appears to operate on the ‘edge of chaos’ with a power-law distribution of the cycle
lengths. This critical regime is rather generic and can be obtained without a fine tuning of
the parametersK andα, in contrast to the original Kauffman model. With its generic scale-
free features in the organization and dynamics, the growing directed network serves as another
paradigm for the emergence of scale-free dynamical and organizational properties as exhibited
in many real-world networks.
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